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This paper provides model documentation for comparison of traditional modeling techniques such as 

logistic and linear regressions and Machine Learning (ML) methods conducted by FCG on the Global 

Credit Data (GCD) Large Corporates default data. The analysis covers historical averages, regression 

analysis and machine learning for predicting LGD and probability of Cure. We further explore the 

potential of the dataset by increasing the number of independent variables from known risk drivers to all 

applicable information provided within the GCD dataset’s framework. We also explore the possibility of 

changing the GCD definition of “cure” in order to increase predictive power of the models.  

The models are built on the data on Large Corporate defaults, provided by GCD, which includes defaults 

from all over the world, but is dominated by observations from North America and Europe. Results show 

that a Machine Learning model can perform better than the traditional regression model. This can be 

seen both when using an extended number of risk-drivers and when restricted to a more limited 

traditional set only. We could not identify any additional specifically strong risk drivers besides the 

original ones, but the overall predictive power for probability of cure, explained by Area under the Curve 

(AUC) of the ML model increased from 0.82 to 0.86. We also assessed whether altering the GCD’s 

implemented definition of “cure” would add explanatory power to a predictive model but found no 

significant improvement, suggesting that the existing definition is in some way optimal. 
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4. 

1 Introduction 

1.1 Background 
Estimation of Loss Given Default (LGD) can substantially affect a bank’s business as many 

regulatory requirements are related to this metric, including minimum capital levels and profit 

provisions for loan performance. This makes LGD one of the most important metrics in credit 

risk management and, therefore, the precision of its estimation is extremely valuable. 

Contemporary achievements in the field of Machine Learning (ML) allow a new level of 

precision within a variety of fields. However, officials are often reluctant to allow machine 

learning within such a sensitive industry as banking due to consequent model risk. In order to 

shed light on this issue, we decided to combine the power of machine learning with the large 

number of default observations gathered in GCD’s LGD/EAD pooled database. The data 

provided by GCD is especially interesting for this kind of research, because it aggregates the 

data from various banks around the world, dramatically increasing the number of observations 

available for study compared to what is usually available for bank’s internal models, but also 

increasing the variability of observations. Thus, the model development work here is also a 

test of whether the GCD data and data model are suitable for use in forward looking LGD 

estimation models, not just historical descriptions. 

 

1.2 Purpose 
The main purpose of this paper is, using a pooled data set of default data, to evaluate if ML 

can increase the accuracy of LGD prediction compared to traditional pooling and regression 

techniques. The main question of the study therefore is whether ML is worth the model risk it 

entails. In the development of ML “challenger” models, we also explore if ML can help in 

discovering additional risk drivers apart from those commonly used when estimating LGD. We 

also briefly address modeling the cure definition. 

 

1.3 Scope 

This study focuses on three main steps to compare the modeling techniques: data quality 

control, development of baseline models, and development of challenger models. As a part of 

data quality control and in order to secure the adequacy of data for modeling and comparability 

with results from the LGD Report 2019 - Large Corporate Borrowers (Rainone & Brumma, 

2019), the paper starts with a replication of outcomes from the report and description of the 

data quality checks conducted by GCD and FCG to achieve the highest possible quality of the 

data. After that, two baseline models are designed using traditional modeling techniques, 

namely, historical averages and regressions. The purpose is to establish a benchmark to which 

ML models can be compared in order to conclude if ML delivers a significant improvement in 

LGD prediction accuracy. Using ML, a set of challenger models is designed and implemented. 

There are two different model classes implemented. The first one predicts LGD using risk 

drivers comparable to the baseline models. The second one explores the full potential of GCD 

Figure 1. Description of model development 

Baseline model A: 

Historical Averages 

Cure, LGD estimated 

based on historical 

averages 

Baseline model B: 

Regression 

Cure, LGD estimated 

based on logistic and 

linear regressions 

known risk drivers 

Challenger model: 

Machine Learning 

Cure, LGD estimated 

using ML models and 

same risk drivers as 

Baseline B. 

Dataset extension: 

Machine Learning 

Cure, LGD estimated 

using ML models and 

all the data gathered 

by GCD 
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dataset and is built on extended risk driver set. As mentioned before, the reason to add more 

risk drivers is to evaluate if ML techniques, having the strength to predict from datasets with 

few data points, can find risk drivers not previously considered relevant for traditional models. 

 

1.4 Application  
These models are intended to be a reference to any bank interested in exploring the ML 

approach when estimating LGD. However, a direct recreation of the model might be 

inadvisable due to the differences in actual loan portfolios, macroeconomic factors affecting 

different banks and other unique features. Therefore, it is recommended to consider the 

provided models as a collection of best practices and commonly used methods, applicable to 

estimating LGD. We note GCD’s advice to always commence using GCD data sets by creating 

a restricted “Representative Data Set” from the master data supplied, ensuring compatibility 

with the member’s portfolio. 

 

2 Data and Population 

2.1 Data source 
The data for this study is provided by GCD, which collects the data from its member banks 

according to pre-determined rules. The GCD data quality standards have been developed by 

practitioners from the member banks over the past decade to meet the requirements of 

regulatory, business and accounting purposes. In order to ensure a high quality of its data, 

GCD establishes a number of requirements on the submissions. These standards are in 

compliance with international rules and regulations such as Basel, IFRS9, CECL. GCD limits 

data contribution to banks complying with the Basel II rules regarding Advanced Internal Rating 

Based approach as they must collect and maintain the data necessary to build models. Local 

rules and regulations are addressed indirectly, as each bank can tailor the data to its needs.  

 

2.2 Population 
This study is conducted on the defaulted exposures within GCD member banks’ large 

corporate borrowers. The same dataset has been previously used for LGD Report 2019 - Large 

Corporate Borrowers (Rainone & Brumma, 2019). The original data contains information on 

defaults between the years 1998 and 2015. However, only the years 2000 to 2015 were chosen 

for this study due to data completeness reasons. This is in line with the GCD LGD Report 2019 

(Rainone & Brumma, 2019) where it is explained that pre-2000 defaults were not completely 

collected as they occurred prior to the Basel default definition while post-2015 defaults are not 

yet completely collected as banks await the outcomes of sometimes long workout activities.  

 

2.3 Data quality control  
A pooled data set requires its user to filter out irrelevant observations in order to create a 

representative data set to ensure that the data matches the user’s portfolio. This study is based 

on LGD Report 2019 - Large Corporate Borrowers (Rainone & Brumma, 2019) and its 

underlying data, the GCD Large Corporate Reference Data Sets (RDS) was replicated. This 

step ensures that the report results can be accurately reproduced and, consequently, that the 

data quality is compatible with previously reported results.  
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In this paper, authors’ model loan level LGD, but it is also possible to model a borrower level 

LGD. Then, the pool of observations was reduced to Large Corporates senior non-syndicated 

loans only, which were previously included in the RDS. A conservative assumption was made 

regarding missing values of syndication indicator, so they were also excluded from the dataset. 

The labels for Securitization, Seniority, and Syndication were replicated manually based on 

the corresponding features (indicators). To do so, exposures were divided based on underlying 

facility type. Then the debt instruments were assigned Seniority labels (Senior or 

Subordinated) and other exposures were assigned the Other/Unknown label.  In other words, 

specific filters were applied to the data following the logic and descriptions from the original 

report. In the end, the graphs have been generated and the results corresponded to the ones 

reported by Brumma and Rainone (2019). 

Another data quality control performed is analysis of descriptive statistics of the variables. The 

checks included calculating extrema, mean and median, identifying outliers, wrong values, 

counting the number of missing values in respect to the meaning of the variables. The controls 

were executed in relation to consequent variable selection and feature transformation and the 

variables presented in this study showed a good quality. 

 

2.4 Data processing and transformation 
After recreating the RDS, the dataset is prepared for modeling. First, variables are chosen as 

risk drivers for the models. The historical averages model explores five variables in line with 

the GCD LGD report. The number of independent variables was increased to cover 25 

important and known risk drivers for the regression and challenger models. In the end, 

additional variables provided within the GCD data are included. 

After the risk drivers are chosen, the selected data are formatted to be consistent with the 

requirements of the different models, i.e. type conversion, recoding missing values, etc. 

Missing data are imputed with median values and outliers winsorized (capped) to a boundary 

percentile value. Lastly, feature engineering is used for the data transformation and additional 

features such as ratios, log values, and encodings are created from the risk drivers. In the end, 

the data is normalized or Weight-Of-Evidence (WOE) transformed. 

 

2.4.1 Risk-driver selection and feature transformation 

This section is focused on feature engineering and transformations of variables that are 

included in the models. Numeric type features can be calculated in such a way that the feature 

is transformed either to a log value or ratios of two features. Feature transformation is 

presented in three sets. First list contains seven variables that are processed in order to create 

the groupings criteria for the historical averages model. Second part lists the popular risk 

drivers, created to compare the regression and ML models. The last part contains the rest of 

the variables used to extend the dataset.  

Within the framework of the historical averages model, the observations are sorted into 

different groups according to the following features: 

1. Collateral Label – a dummy variable based on whether the loan is secured or not. In 

case there is no information on collateral behind the loan, it is treated as non-secured. 

2. Collateral Type – Collateral types securing the loan which the lender can usually get 

control of and sell if necessary. 

3. Seniority Code – is a more detailed equivalent of Seniority Label provided within GCD 

RDS, consisting of five values: Super senior, Pari-passu, Junior, Equity and Unknown.  
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4. Country of Residence – is a variable describing the borrower’s country of residence. 

5. Downturn Flag – accounts for economic downturn and marks all observations from 

default year 2001, 2002, 2008, 2009 and European observations in default year 2012.  

During the trials, other grouping variations were explored. Seniority Label, which is an ordinal 

variable that includes values “Senior”, which is assigned to the super senior and pari-passu 

loans, “Subordinated” which corresponds to junior or subordinated loans, and 

“Other/Unknown” when the seniority of loan cannot be determined or is unknown. Country of 

Jurisdiction (the country of the court specified in the loan documentation), as provided by the 

dataset was tried instead of the country of residence. However, the model performance is 

marginally worse while using these variables.  

A larger number of features is used to compare the regression and ML models.  Besides 

previously described features, the following variables are included:  

1. Default Lender Borrower Risk Rating – information about borrower’s internal default 

rating. 

2. Initial Lender Borrower Risk Rating – information about borrower’s original internal 

default. 

3. Log (EAD 1)– is common logarithm of default amount. 

4. Default Loan/Limit 1 – is a ratio of default amount to Lender Limit at the point of 

default.  

5. Log (EAD 2) – is common logarithm of default amount.  

6. Default Loan/Limit 2 – is a ratio of default amount to Lender Limit at the point of 

default.  

7. Default LTV – is a ratio of default amount and the total of collateral values at the point 

of default.  

8. Default LTV 1 Flag – is a dummy variable indicating that Default LTV equals or 

exceeds 1. 

9. Initial Loan Amount log – a common logarithm of the initial loan amount. 

10. Initial LTV – is a ratio of initial loan amount to collateral value at the origination.  

11. Initial LTV 1 Flag – is a dummy variable indicating that Initial LTV equals or exceeds 

1. 

12. EAD 1/Initial Loan Amount – is a ratio of default amount represented by the variable 

Default Amount 1 to Lender Outstanding Amount at the time of loan origination. 

13. EAD 2/Initial Loan Amount – is a ratio of default amount represented by the variable 

Default Amount 2 to Lender Outstanding Amount at the time of loan origination. 

14. Initial Share Real Estate – is a ratio of Collateral Value for Real Estate collateral at 

the time of loan origination to the Initial Loan Amount. 

15. Default Share Real Estate – is a ratio of the Collateral Value at the time of default to 

the default amount. 

16. Initial Share Other – is a ratio of other than real estate collateral to the loan amount at 

the origination of the loan.  

17. Default Share Other – is a ratio of other than real estate collateral to the loan amount 

at the loan’s default.  

18. Initial Loan/Limit – is a ratio of initial loan amount to initial lender limit. 

19. Mean Entity Assets log – this variable describes the size of the company represented 

by the common logarithm of the average assets per entity as recorded in the Financial 

table: log10(
∑ 𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑒𝑡𝑠 

𝑛(𝐷𝐴 𝐸𝑛𝑡𝑖𝑡𝑦 𝐼𝐷)
). In case when all records for an entity are missing, the 

variable is assumed to be equal to zero. 
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20. Mean Entity Sales log – this variable describes the size of the company represented 

by the common logarithm of the average sales per entity as recorded in the Financial 

table: log10(
∑ 𝑒𝑛𝑡𝑖𝑡𝑦 𝑠𝑎𝑙𝑒𝑠 

𝑛(𝐷𝐴 𝐸𝑛𝑡𝑖𝑡𝑦 𝐼𝐷)
). In case when all records for an entity are missing, the 

variable is assumed to be equal to zero. 

21. Mean Guarantee Percentage – is an average Guarantee Percentage per loan ID as 

recorded in the Guarantor table. 

22. Primary Industry Code – is a categorical variable describing the industry that accounts 

for the largest percentage of the Entity’s revenues, as recorded in the Entity table. 

As the analysis was extended across the dataset, some additional risk drivers were included 

in the model: 

1. Loan Spread – is a numeric column, represented by the Total Spread and, in case the 

total spread is missing, the Spread column as recorded in the pricing column. The 

variable is transformed to non-negative. 

2. Base Rate – the numerical categorical variables, describing the base rate type (LIBOR, 

EURIBOR, etc.) as recorded in the pricing table.  

3. Total Rate – a sum of Loan Spread and Base Rate 

4. US segment – a field calculated by GCD which segments the data between shared 

segments from US members as recorded in the Loan table. 

5. Facility Type – facility type as recorded in the loan table.  

6. Nature of Default – is a categorical variable that indicates the first reason why the 

lender has put the Borrower in default (Basel II guidelines) at the Event Date (Default 

Date).   

7. Rank of Security – the rank of collateral security aggregated on the loan level. For the 

loans with several different collaterals a “Subsequent Charge” category was assigned. 

8. Committed Indicator - the contractual obligation for the bank to “make the funds” when 

the facility is drawn by the client, as recorded in the loan table. 

9. Leveraged Finance Indicator – indicates acquisition finance or leveraged buyout at 

the time of default. 

10. Financial Currency – the currency denomination of the Entity Financials same 

currency for all financial figures, as recorded in the financial table. 

11. Public-Private Indicator – a categorical variable that provides further information on 

the ownership of the company (publicly traded/privately owned/SPV). 

 

2.4.2 Outliers and missing values 

In order to prepare the data for further transformations, the data quality had been studied. 

Variables are dropped if over 50% of observations are missing. In some cases, a null value 

may indicate a 0, “No” or “N/A” instead of a missing value. This requires a detailed 

understanding of data. 

The initially engineered features 
𝐸𝐴𝐷1

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑎𝑛 𝐴𝑚𝑜𝑢𝑛𝑡
,

𝐸𝐴𝐷2

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑎𝑛 𝐴𝑚𝑜𝑢𝑛𝑡
, and 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑜𝑎𝑛

𝐿𝑖𝑚𝑖𝑡
  were 

dropped after this exercise due to the large number of missing values.  Many GCD member 

banks do not report data from loan origination. During trials, the model with a threshold of 40% 

was investigated, but its predictive power is lower.  

The chosen method of data transformation is robust to outliers because it categorizes data and 

an outlier ends up in one of the categories. Therefore, the final model is not affected by outliers 

even when they exist. However, an alternative where for all numeric type features, outliers are 

floored and capped to a boundary percentile value which are 3% and 97% respectively was 
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also tried. Among variables that have been truncated are Default LTV, Default Share Real 

Estate, Initial Share Real Estate, Default Share Other, Initial Share Other. 

 

2.4.3 Weight of Evidence transformation 

Weight-Of-Evidence (WOE) method was chosen to transform the variables and prepare them 

for modelling. WoE is a robust to outliers method which splits observations of a given 

explanatory variable into groups depending on their informational value about the dependent 

variable. For the P(Cure), which is a discrete variable, transformation is done according to the 

following formulas: 

 𝑊𝑜𝐸𝑖 = ln (
𝑝𝑐𝑢𝑟𝑒 𝑖

𝑝𝑛𝑜𝑡 𝑐𝑢𝑟𝑒 𝑖
) (1) 

 
𝐼𝑉 = ∑(𝑝𝑐𝑢𝑟𝑒 𝑖 − 𝑝𝑛𝑜𝑡 𝑐𝑢𝑟𝑒 𝑖)

𝑛

𝑖=1

∙ 𝑊𝑜𝐸𝑖 (2) 

 

The estimated LGD given non-cure is a continuous variable, and research suggests using a 

modified WoE, where percentages are used instead of the number of observations, to 

transform its risk drivers. However, we do not have the opportunity to transform variables once 

again after the prediction on Cure. Therefore, the WoE is based on 𝑃(𝐶𝑢𝑟𝑒).   

 

2.5  Training and validation dataset split 
The transformed dataset containing 16674 defaults between the years 2000 and 2015 is split 

into a training and a validation set. A random split where 80% of the dataset or 13 339 

observations are randomly selected into the training set and the rest 20% (3 335 observations) 

are used for validation purposes is chosen. This approach allows conserving the variables’ 

probability distributions for which the model is based on, which is in line with the purpose of 

the study.  

Another approach where the training dataset contains loans defaulted from 2000 to 2011 and 

the validation set contains the loans defaulted in 2012 to 2015 was also studied within the 

framework of the Historical Averages modeling approach. This was an interesting exercise 

because such an approach to splitting datasets is widely used. Such a split provides newer 

data but does not cover the whole business cycle. Therefore, the default distribution within the 

validation dataset might differ substantially from the one in the training dataset. 

 

3 Methodology 

3.1 Assumptions 
2019 Corporate LGD Report (Brumma & Rainone, 2019) assumes that 𝐸(𝐿𝐺𝐷|𝐶𝑢𝑟𝑒) = 0. 

According to expert judgment from member banks however, this assumption is oversimplified 

and cannot be applied to real-world problems. Therefore, it is assumed that the estimated loss 

given default for the cured loans is equal to the actual mean of LGD among cured loans: 

𝐸(𝐿𝐺𝐷|𝐶𝑢𝑟𝑒) = 𝑎 

𝑤ℎ𝑒𝑟𝑒 𝑎 = (𝐿𝐺𝐷|𝐶𝑢𝑟𝑒)𝑀𝑒𝑎𝑛 > 0 
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3.2 Important definitions 
This section presents the definitions of the core concepts/dependent variables used in this 

paper. Note, that all the variables used in the model follow definitions assigned by GCD. Due 

to the variability of use of the data and requirements for its quality in different jurisdictions, 

GCD standards focus on the global rules and regulations, such as IFRS9, CECL, TRIM, and 

Basel. The definitions within the dataset are therefore compliant with those provided by the 

regulations.  

 

3.2.1 Definition of Default 

A default event is defined in accordance with the Basel accord. The nature of default differs 

from loan to loan and can imply 90 days past due, sale at material credit loss, distressed 

restructuring, non-accrual status, charge off or specific provision, obligor’s unlikeliness to pay 

or bankruptcy. Banks providing the data used their internal definitions of “unlikeliness to pay”, 

which is an inevitable source of difference between data from each bank. 

 

3.2.2 Definition of Cure  

A cure event is defined in accordance with CGD internal guidelines. GCD member banks have 

agreed on the following definition of cure: A default having time to resolution < 1 year, no write-

off and no collateral sale or guarantee call. All these items are collected separately as inputs 

in the data template and the cure marker is calculated by GCD. 

Within this research, other definitions of cure were explored within the framework of the cure 

predictions, with main focus on the time to resolution which was shrunk to 30 days and 

stretched up to 5 years. We have also explored a possibility to define a Cure as a function of 

LGD. The reason behind this exercise is to explore if there are more predictable definitions. 

For more information on this see Section 4.6. 

 

3.2.3 Definition of Loss Given Default 

The Loss Given Default (LGD) is calculated by GCD based on the loan information provided 

by member banks. Being a dependent variable in the models described in this paper, LGD is 

therefore defined in accordance with GCD internal methodologies as economic LGD where 

Principal Advance and Financial Claim are parts of the recovered amount. GCD uses a risk-

free discount rate in the calculation of LGD and therefore the absolute levels of LGD are 

generally lower than the ones calculated by banks. The value of LGD for each loan is floored 

at 0% and capped at 150%. GCD employs several methods to calculate LGD, within the 

chosen framework, the amount is not aggregated on the borrower level. 

 

3.3 Model design 
Theoretical approaches to LGD estimation modeling suggest single-stage and multistage 

models (Tanoue et al., 2016; Kawada & Yamashita, 2013). For the ML model we employ the 

same structure as for the models developed using the traditional techniques, predicting the 

LGD in two steps, where the first step is to predict probability of Cure and the second is to 

predict the probability of LGD based on the previous predictions. Literature provides 

information on more complex multi-stage models that allow for a better precision, but they 

usually need to be tailored to the specific needs of a bank, while we are looking for an overall 

comparison between traditional modeling techniques and ML (Tanoue et al., 2016; Kawada & 
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Yamashita, 2013). Furthermore, such models are very useful when developed at the time of 

loan origination, then the first step is to predict the probability of default. The latter is out of 

scope for this research.  

 

Figure 2. Model structure. 

To adjust predictions to the LGD distribution, the expected LGD was broken into two separate 

models as shown in Figure 2. As 𝐿𝐺𝐷𝐶𝑢𝑟𝑒 𝑀𝑒𝑎𝑛 is assumed to be a constant, developed models 

are focused on separate prediction of 𝑃(𝐶𝑢𝑟𝑒) and 𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) where 

𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) and 𝑃(𝐶𝑢𝑟𝑒) modeled in different ways. 𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) is sometimes 

referred as Loss Given Loss, but we prefer to avoid this term as in many cases there can also 

be a zero loss. The overall structure is presented in Figure 2.  

𝐸(𝐿𝐺𝐷) = 𝑃(𝐶𝑢𝑟𝑒) × 𝐸(𝐿𝐺𝐷|𝐶𝑢𝑟𝑒) + (1 − 𝑃(𝐶𝑢𝑟𝑒)) × 𝐸(𝐿𝐺𝐷|𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) =

= 𝑃(𝐶𝑢𝑟𝑒) × 𝐿𝐺𝐷𝐶𝑢𝑟𝑒 𝑀𝑒𝑎𝑛 + (1 − 𝑃(𝐶𝑢𝑟𝑒)) × 𝐸(𝐿𝐺𝐷|𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) 

For the historical averages model, the historical averages of cure and LGD are used for 

modeling. For the regression model, logistic and linear regressions are developed. The 

Challenger model is developed using ML, where a classifier method is used to predict the 

probability of cure and LGD in the case of non-cure is estimated using a regression technique.  

As the model structure is set, several models with different features are tried within the given 

framework. Thus, different types of groupings are tried for historical averages model, while the 

regression models investigate the effect of different ways of handling missing data as well as 

the effect of using WOE instead of actual variables. While building the challenger models, 

different ML methods are explored. All the models are validated, then the development process 

and the best model’s characteristics are described in this document.  

 

3.4 Traditional modeling techniques 
This section focuses on providing short explanations regarding the modeling techniques used 

for the final model, predicting LGD using the traditional model.  

 

3.4.1 Historical averages 

Historical averages are a straightforward modeling technique where LGD is predicted based 

on the previous observations about LGD within specified groups of the dataset. This technique 

was chosen because it is sometimes used in large banks (Severeijns, 2018) and is the most 

simple and transparent way to start an analysis.  

Estimated LGD is predicted for each group based on the combination of the probability of the 

cure and LGD in the case of non-cure, which are given as follows: 

Defaulted 

Obligation 
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𝑃(𝐶𝑢𝑟𝑒) =  
# 𝑐𝑢𝑟𝑒𝑑 𝑙𝑜𝑎𝑛𝑠

# 𝑙𝑜𝑎𝑛𝑠
 

𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) = (𝐿𝐺𝐷𝑚𝑒𝑎𝑛 |𝐶𝑢𝑟𝑒 = 𝑁) 

Groups are determined by the chosen risk-drivers, so each group has the same features. For 

more information on the risk-drivers see Section 2.4.1. 

 

3.4.2 Logistic regression 

Logistic regression is one of the most popular tools to model a binary outcome. This type of 

regression uses a logistic function to model a binary dependent variable. The function gives a 

sigmoid 'S' shaped curve, restricted between 0 and 1 modelling the probability of the event 

represented by the dependent variable. The coefficients are more difficult to understand than 

those of linear model, but easier than those of more advanced models. They represent the 

relationship between the explanatory variable and the logistically transformed dependent 

variable. According to the logistic regression, the probability of cure is given by:  

𝑃(𝐶𝑢𝑟𝑒) =
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖∙𝑥𝑖)
 

Where α is the intercept of the model 𝛽𝑖, is a slope coefficient and 𝑥𝑖 is the value of the models 

𝑖 risk-driver.  

In Python, logistic regression is provided within Scikit-learn package and is called via function:  

LogisticRegression().fit(X train, y train) 

The model performance is subsequently verified on the test dataset via function: 

LogisticRegression().predict(X test, y test) 

 

3.4.3 Linear regression 

Linear regression is often used to predict a continuous outcome based on the given inputs. 

This is a simple and straightforward method allowing an intuitive understanding of the 

relationship between the dependent and the explanatory variables. As the 𝐸(𝐿𝐺𝐷|𝐶𝑢𝑟𝑒) is 

assumed to be a constant, linear regression is used to model the LGD in case the loan has not 

been cured as follows: 

𝐸(𝐿𝐺𝐷|𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) =  𝛼 +  ∑𝛽𝑖𝑥𝑖 

Where α is the models' intercept, 𝛽𝑖 is a slope coefficient and 𝑥𝑖 is the value of the models 𝑖 
risk-driver.  

In Python, linear regression is provided within Scikit-learn package and is called via function:  

LinearRegression().fit(X train, y train)  

The model performance is subsequently verified on the test dataset via function: 

LinearRegression().predict(X test, y test) 
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3.5 Machine Learning 

3.5.1 Decision trees 

The decision tree method creates a simple model for each feature and then achieves precision 

by splitting the data with each step and predicting an outcome for each feature in a stepwise 

fashion. This method is robust to outliers and missing data and holds no assumption about the 

data distribution or multicollinearity within the data. It is also easy to interpret the model results. 

The disadvantage of the decision tree technique is that it chooses the best split for each feature 

within the given dataset which may lead to overlooking the best model in general and to 

overfitting.  

 

3.5.2 Gradient boosting decision trees and random forest 

To overcome the disadvantages of decision trees, the gradient boosting decision trees (GBDT) 

classifier was chosen for modeling the probability of cure. The python option XGBoost() runs 

an improved algorithm called extreme gradient boosting (XGBC for classifier, XGBR for 

regressor), which creates a sequence of models and then assembles them to create a more 

powerful prediction model. This technique allows for dealing with non-linear relations between 

the dependent and independent variables. XGBC/XGBR helps to improve predictions, i.e. 

choosing better decision trees, and to address the problem of overfitting, although does not 

completely solve it. 

Another way to ensemble the decision trees is a random forest (RF). This technique builds 

separate decision trees on a multitude of combinations of randomly selected samples and 

features. Unlike the XGBC/XGBR, which ensembles a number of different decision trees on 

build on all given data, RF uses only a sub-sample of the data for each tree. This technique 

inherits all the advantages of the decision trees modeling and addresses its weak points. The 

resulting overfitting problem is solved in a better manner compared to GBDT. However, the 

interpretation of relations between dependent and independent variables is unclear.  

XGBC classifier and RF classifier as well as their average results are investigated with the 

GridSearchCV function to find the best model for predicting Cure. XGBR regressor and RF 

regressor as well as their average results are investigated with the GridSearchCV function to 

find the best model for estimating LGD. The mean results of XGBC and Random Forest 

Classifier (RFC) and gradient boosting decision trees are proved to model the probability of 

cure in the best way and Random Forest Regressor (RFR) estimates LGD.  

Neural networks (Keras DNN, MLPC) and Support Vector Machine were investigated along 

with the chosen modeling ways. However, there are not enough data to produce meaningful 

results with these methods. 

 

3.6 Measures of predictive power 

3.6.1 Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) 

This study uses ROC AUC analysis to measure the model performance when predicting the 

probability of cure. This measure is chosen because it is a commonly used metric for model 

comparison where the dependent variable is 0/1. The ROC area under the curve graphically 

shows the model performance power and has a direct explanation, representing a percentage 

of cases properly predicted by the model. 
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3.6.2 Mean Absolute Error (MAE) 

To measure predictive power when estimating LGD in the case of non-cure, this study uses 

Mean Absolute Error (MAE) which is an average of absolute errors: 

𝑀𝐴𝐸 =
∑ |𝐸(𝐿𝐺𝐷|𝑁𝑜𝑡 𝐶𝑢𝑟𝑒)𝑖 − (𝐿𝐺𝐷|𝑁𝑜𝑡 𝐶𝑢𝑟𝑒)𝑖|𝑛

𝑖=1

𝑛
 

This is a widely used measure for assessing average model performance for non 0/1 

dependent variable models. Among its advantages is that it does not penalize huge standalone 

errors and therefore is robust to outliers. The main disadvantage of MAE is that it, as well as 

most of the other error measures, does not properly reflect the bimodal distribution of the 

dependent variable, LGD. Thus, it chooses the model with the smallest possible error i.e. the 

one which prediction are mathematically closer to the true values, but another model might 

perform better in classifying loans by those in low and in high risk of large LGD. This 

disadvantage is partially addressed in the model structure attempting to first separate the 

“cure” cases to reach a normal distribution of the LGD when it is modelled. Although a complete 

separation is difficult to achieve and a bimodal distribution still exists within the framework of 

the presented models, a simple and explainable error measure that can be used for historical 

average, regression and ML models is preferred. Given this, MAE is deemed to be a good 

enough measure for model comparison.  

 

3.6.3 Shapley Additive Explanations (SHAP) 

Shapley Additive Explanations (SHAP) by Lundberg and Lee (2017) are used to assess 

individual risk drivers’ power of prediction. Shapley values consider all possible predictions for 

an instance using all possible combinations of inputs, giving a summary scoring and ranking 

for all model features. The ranking shows what features contribute the most to the predictions 

and to what extent. 

 

4 Analysis and Results 

4.1 Traditional modeling techniques 

4.1.1 Historical Averages 

The historical average is a naïve model that attempts to predict future LGD based on the 

historical average LGDs within the different subgroups of the dataset. The observations are 

grouped based on five risk drivers described in Section 2.4.1. In total, there were 1 183 groups 

created, with the maximum 762 observations in a group, and minimum of one observation per 

group. One of the main disadvantages of this model is 374 groups out of 1183 consist of one 

observation, making the model prone to overfitting. Table 1 shows the number of categories 

within each variable: 

Grouping criteria Number of values Type of variable 

Country of residence  93 Categorical 

Collateral label  2  Dummy 

Collateral type  25 Categorical 

Downturn flag  2  Dummy 

Seniority  5 Categorical 

Table 1. Grouping criteria for historical averages model 
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The 𝑃(𝐶𝑢𝑟𝑒) is modeled for each group. Figure 3 presents the true and predicted the 

distribution of Cure in the validation dataset with the split 80%/20%. As it can be seen, 

predicted 𝑃(𝐶𝑢𝑟𝑒) distribution differs from the actual distribution of “cure” and “non-cure” 

events. However, as for any two-state event, the application of a probability will always differ 

from the outcome.  

Figure 3. True (left) and predicted (right) Cure distribution 

Furthermore, the AUC is 0,71 which is a typical result for an LGD model in the non-retail space. 

The MAE is 0,25 meaning that the predicted LGD differs from the true one. One of the reasons 

for this is an incorrectly predicted Cure in the previous step. As the historical averages model 

is also a way to understand the dataset, it was run on two different splits of the data. The 

results show that the Random split 80%/20% is preserving the distribution of the Cure and 

LGD while the split by year provides newer data that differs from the older one. Therefore, the 

random split is better for building a theoretical model. 

Metrics 
Random split 

80%/20% 
Split by 

year 

AUC 0,7144 0,6305 

MAE 0,2595 0,3014 

Table 2. Summary results, historical averages model 

 

4.1.2 Regression analysis 

Baseline model B predicts future LGD based on the results of logistic and linear regressions.  

𝑃(𝐶𝑢𝑟𝑒) is modeled using a logistic regression according to Lohmann and Ohliger (2019). 

𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒) is a linear regression with known LGD risk drivers chosen according to 

Zhang and Thomas (2012) and Martinsson (2017). The model is developed to predict the LGD 

at the time of default. For this, a dataset prepared according to Section 2.3 is used: missing 

values are imputed, for the variables containing less than 50% missing values, otherwise, the 

variable is dropped, outliers are winsorized. The summary results are presented in Table 3.  

Regression Metric 

Logistic, predicting CURE AUC 0,7224 

Linear, predicting LGD MAE 0,2664 

Table 3. Baseline B results 
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After that the variables were ranked using SelectKBest() function. It allowed to create scores 

based on ANOVA F-value between features for Cure classification (f classif) and F-value 

between feature for regression model. The best 10 predictors for both Cure and LGD are 

presented in the table 4. As it can be seen, country of residence and country of jurisdiction are 

the most important factors in the estimated LGD. A possible reason for this is that a country 

label recognizes the different macroeconomics factors between countries (residence) while the 

jurisdiction label brings in the differing workout laws and practices between countries. Another 

important feature is, as expected, industry code, which can represent both the industry risk 

and the differing financial situations of companies between industries (e.g. leverage). Outside 

of the top three predictors, the ranking differs for Cure and LGD. 

Rank Feature Estimating Cure Score  Feature Estimating LGD Score 

1 Country of residence 684  Country of residence 176 

2 Country of jurisdiction 609  Country of jurisdiction 173 

3 Industry 92.75  Industry 76.80 

4 Sales log 72.08  EAD 2/Initial Loan Amount 73.41 

5 Borrower Risk Rating 71.19  EAD 1/Initial Loan Amount 46.88 

6 EAD 2/Initial Loan Amount 57.25  Initial Loan/Limit 44.69 

7 Default Loan/Limit 2 54.26  Initial Loan Amount log 40.04 

8 Initial Share Real Estate 52.80  Default Share Other 27.90 

9 Default LTV 47.61  Mean Guarantee Percentage 26.52 

10 Default Share Real Estate 46.52  Default Lender Borrower Risk Rating 13.65 

Table 4 Ranking of best ten risk-drivers 

 

4.2 Machine learning 
The ML model is a logical continuation of the regression model. It has the same structure and 

the same set of risk-drivers is used. However, the challenger model uses ML to model 𝑃(𝐶𝑢𝑟𝑒) 

and 𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒). This approach allows for a direct comparison between traditional 

modeling and ML.  
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Figure 4. Comparison of the traditional modeling techniques and ML 

For a better comparison between the models, each model’s best hyperparameter setup has 

been investigated using scikit-learns GridSearchCV function. This python function searches 

for the best parameters using a fraction of the training data as a validation set. It repeats each 

unique parameter setup k-times (usually k=3) and picks the parameters with the highest 

average score. For classification (prediction of 𝑃(𝐶𝑢𝑟𝑒)) the scoring is AUC, while for 

regression (𝐸(𝐿𝐺𝐷 | 𝑁𝑜𝑡 𝐶𝑢𝑟𝑒)), the scoring is MAE. The table below shows the results from 

the best performing model according to the gridSearch: 

Model Metric 

Mean (XGBC, RFC) AUC 0,8231 

RFR MAE 0,2238 

Table 5. ML model results 

Machine learning shows better results compared to regression analysis or historical averages 

models. AUC increases by 0,1 which is substantial, but MAE decrease is not particularly large 

as it only decreased by 0,04 from 0,26 to 0,22.  

 

4.3 Risk drivers’ analysis 
In order to assess the relevance of the risk drivers used in the models described in the previous 

section, they were assessed using SHAP and RFE analysis. RFE analysis recursively removes 

features, builds a new model using the remaining features and calculates AUC or MAE. The 

ranking shows what features, relative the other features, contribute the most to the predictions. 

Both SHAP and RFE ranked Country of Residence and Country of Jurisdiction as the most 

useful features for classification of Cure and Non-Cure as well as LGD estimation. However, 

in a bank-developed model these features should be used separately due to high correlation. 
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In the case of the current model it is not a problem, because the scope of this research is a 

pure comparison.  

Rank XGBC (Cure) RFR (LGD) 

1 Country Of Jurisdiction  Country Of Jurisdiction  

2 DA Country Of Residence  DA Country Of Residence  

3 Default Share Real Estate  Primary Industry Code  

4 Initial Lender Borrower Risk Rating  EAD 1/Initial Loan Amount  

5 Mean Entity Sales log  Mean Entity Sales log  

6 Mean Guarantee Percentage  Default Loan/Limit 2  

7 Initial LTV  EAD 1 log  

8 Initial Share Other  Mean Entity Assets log  

9 Default Lender Borrower Risk Rating  Default Share Other  

10 Primary Industry Code  Default Loan/Limit 1  

Table 6 Top risk-drivers from SHAP and RFE analysis 

 

4.4 Extending the analysis 

4.4.1 Extending the number of model features 

A natural question to ask is if the improved predictive power of ML-models can be extended 

even further by adding more model features to the dataset. To test this, all analysis was re-

created using an extended dataset. The features added to the analysis are presented in table 

7 and together with features presented in section 2.4.1 created the extended dataset. Baseline 

A models were excluded from the extension of the analysis. 

Model features  Type Model features  Type 

Discount Rate  Numeric Rank of Security  Dummy 

Loan Spread  Numeric Committed Indicator  Dummy 

Base Rate Numeric Leveraged Finance   Dummy 

Total Rate  Numeric Collateral Label  Dummy 

US segment  Dummy Seniority Label  Dummy 

Facility Type   Dummy Financial Currency  Dummy 

Nature of Default  Dummy Public-Private Indicator  Dummy 

Table 7. Extended features added to the analysis 

 

4.4.2 Results 

The result was very promising, both the Baseline B models and the Machine Learning Decision 

Trees models increased their predictive power both for predicting the probability of a cure event 

and LGD.  

  AUC MAE 

XGBC + RFR 0.85 0.216 

Baseline B 0.76 0.259 
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Table 8 Extended ML results 

Figure 2: Best single-stage model compared to Baseline B 

SHAP and RFE analysis concluded that several of the added risk drivers were significant. 

 

Rank XGBC (Cure) RFR (LGD) 

1 Rank  Of  Security     Country  Of  Jurisdiction     

2 Country  Of  Jurisdiction     Facility Type     

3 Country  Of  Residence     Industry     

4 Collateral  Type     Nature  Of  Default     

5 Mean  Guarantee  Percentage     Country  Of  Residence     

6 Nature  Of  Default     EAD  1/Initial  Loan  Amount     

7 Public  Private  Indicator     Collateral  Type     

8 Mean  Entity  Sales  log     Default  Loan/Limit  2     

9 Total  Rate     Mean  Entity  Assets  log     

10 Mean  Entity  Assets  log     NOM  DEFAULT  AMOUNT  1     

Table 9. Top risk-drivers from SHAP and RFE analysis, underscore indicates risk-driver from the extended 

features. 

4.5 Comparing all models 
Comparison of all models is presented at the table 10 and the figure 6. Table 10 shows 

differences in AUC and MAE among the models. Figure 6 presents the absolute error for the 

models.  

  AUC MAE 

Baseline A 0.71 0.260 

Baseline B 0.72 0.266 
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XGBC + RFR 0.82 0.224 

Baseline B extended risk drivers 0.76 0.259 

XGBC + RFR extended risk drivers 0.85 0.216 

Table 10: AUC and MAE for all tested models 

 

Figure 6: histogram over absolute error for selected models 

 

4.6 Altering the cure definition  
The cure definition in section 3.2.2. might at first glance seem a bit arbitrary. To test if the 

predictive power of the baseline models could be improved further, the cure was redefined as 

a function of time to resolution or LGD.  

Cure Definition 
MAE 

Baseline A 
MAE 

Baseline B 

Original Definition 0.260 0.267 

TTR < 30d 0.259 0.267 
TTR < 100d 0.262 0.265 
TTR < 200d 0.263 0.267 
TTR < 2y 0.282 0.281 
TTR < 3y 0.286 0.280 
TTR < 5y 0.296 0.366 

LGD < 1% 0.264 0.297 
LGD < 2% 0.266 0.302 
LGD < 3% 0.266 0.268 
LGD < 5% 0.268 0.269 
LGD < 10% 0.272 0.275 
LGD < 20% 0.275 0.306 
LGD < 30% 0.277 0.278 
LGD < 50% 0.285 0.291 
LGD < 75% 0.296 0.320 
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Table 11 Cure definition results 

The conclusion is that even though the MAE metric could be improved slightly, it is not 

significant. Since the original cure definition is standard practice, it would not make much sense 

to alter the cure definition based on the increased predictive power of LGD.  

 

5 Conclusion 
The possibility to recreate the RDS, signalizes an unchanged data quality since the LGD report 

issue (Rainone & Brumma, 2019). Further data quality checks allowed to understand the data 

and pick suitable risk-drivers to build models showing acceptable level of predictive power. 

LGD is considered to be difficult to predict due to its bimodal distribution. The potential future 

research can be focused on increasing the number of steps in the ML models, including 

predicting the PD before the actual default occurs, as well as separate prediction of 0 ≤ LGD 

< 0,2 (this is the range the most observations of LGD fall in) and LGD ≥ 0,2 where the 

second-highest peak is located. The cure definition used by GCD proved to be similarly 

predictable compared to alternatives with shorter or longer time to resolution and different 

levels of actual LGD. Another way to look at the cure could be to present it as a function of 

time to recovery, which is another opportunity for the future research.  

Historical averages model 

The historical averages model performs in line with the expectations and is the best in 

identifying the customers whose potential LGD is likely to be high (see Figure 7). Its overall 

power of prediction corresponds to the models used in the banks, proving that the GCD data 

contains useful information that can be successfully incorporated into the models. The 

limitations of the model arise from the limited number of observations available for some 

groups, which makes the model prone to overfitting.  
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Regression model 

Regression model performs marginally better than its historical averages counterpart when 

predicting probability of cure. However, the regression’s overall MAE is worse than the one of 

historical averages model. The conclusion is therefore that the regression model performs in 

line with historical averages.  

Machine Learning model  

ML shows some progress compared to traditional techniques as its area under the curve score 

increases by 0.10 to 0.82 and MAE decreases by 0.04 to 0.22 compared to the regression 

model. These improvements signal a better model performance. The ML model is also the best 

model in picking the low-risk customers, whose potential LGD is close to zero (see Figure 7). 

Dataset extension 

The conclusion from extending the dataset was positive. Several of the added risk drivers 

contributed to the increase in model prediction ability.  

Of the extended variables the discount rate had highest predictive power but was excluded 

from the analysis. The discount rate is defined as the 3M Euribor rate at the date of default. 

While using macro variables in the analysis makes sense, the discount rate for the period of 

Baseline B 

Actual LGD Baseline A 

XGBC + RFR 

Figure 7. Actual vs Predicted LGD (x-axis) in number of observation (y-axis) 
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data collection (2000-2015) basically divides the data into 3 different categories, high/normal 

rates up to 2008, low rates between 2009 and 2013, and negative rates after 2013. This 

raised the question if the discount rate was increasing the predictive power or if it was just a 

way to divide the dataset into different subsets and that different characteristics of the 

subsets increased the predictive power. The latter case would lead to no increase in 

predictive power for a loan defaulting today. The authors suggest that this variable could be 

used as an input to the downturn flag rather than a standalone independent variable. The 

loan spread and base rate looked initially like very promising features that should have a lot 

of predictive power but unfortunately, there are too many missing values in the dataset and 

these drivers scored low in the SHAP/RFR analysis.  

It is the authors’ firm belief that given good data quality and a sound choice of model 

features, the increased predictive power from Machine Learning models goes some way to 

offsetting the increased model risk it entails (although metrics for comparing model risk vs 

predictive power have not been prepared). Furthermore, the models produced using GCD’s 

pooled data show strong predictive power and typical industry drivers, indicating that when 

combined with an actual bank’s portfolio, the data could aid robust modelling.  
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6 Appendix 

6.1 Reference to Python projects and tools 
Following Python packages were used for the model: 

1. Keras 
2. logging 
3. matplotlib  
4. numpy 
5. os 
6. pandas  

7. pprint 
8. random 
9. re 
10. scipy 
11. shap 
12. sklearn 

13. statsmodels.api 
14. string 
15. TensorFlow 
16. traceback 
17. warnings 
18. xgboost 

 

 

6.2 Features in regression analysis and machine learning model (not 

extended). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significant coefficients1 CAP LGD 1 CURE (WOE) 

Country of jurisdiction Mixed* 0.05 

Country of residence Mixed* 0.08 

Default Loan/Limit 1 0.07 - 

Default Loan/Limit 2 - 0.14 

Default LTV - 0.09 

Default Share Other -0.08 - 

Default Share Real Estate -0.06 0.09 

Downturn Flag 0.03 - 

EAD 1 log -0.31 - 

EAD 2/Initial Loan Amount - 0.11 

EAD 2 log 0.30 0.37 

Borrower Risk Rating Mixed* 0.21 

Initial Loan/Limit - -0.07 

Initial Loan Amount log -0.03 0.10 

Initial LTV - - 

Initial Share Other - 0.10 

Initial Share Real Estate - - 

Mean Entity Assets log -0.04 0.26 

Sales log 0.05 0.13 

Mean Guarantee Percentage - 0.16 

Industry Mixed* 0.09 
* These categorical variables have been one-hot encoded (made to dummy variables) 
with some categories (country/industry code/risk rating) being significant and others 
not.  
1 Coefficients with a significance level > 0.05 are excluded and marked with "-" 
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Model features Type Model features Type 

Country of jurisdiction Dummy Default Share Real Estate Numeric 

Country of residence Dummy Downturn Flag Dummy 

Default Lender Borrower Risk Rating Dummy EAD 1 log Numeric 

Default Loan/Limit 1 Numeric EAD 2 log Numeric 

Default Loan/Limit 2 Numeric Borrower Risk Rating Dummy 

Default LTV Numeric Initial Loan Amount log Numeric 

Default LTV 1 Flag Dummy Initial LTV Numeric 

Default Share Other Numeric Initial LTV 1 Flag Dummy 

Mean Entity Assets log Numeric Initial Share Other Numeric 

Sales log Numeric Initial Share Real Estate Numeric 

Mean Guarantee Percentage Numeric Industry Dummy 
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